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The time-dependent settling of a dilute monodisperse suspension in a centrifugal force 
field is considered. The settling takes place between two axisymmetric narrowly 
spaced conical disks that are rotating rapidly. Clear fluid and suspension are assumed 
to behave as Newtonian fluids of different densities. The viscosities are, for simplicity, 
assumed to be the same. All effects of the sediment are neglected. The fluid motion 
is assumed to be almost parallel with the disks and is computed by using lubrication 
theory. This leads to a nonlinear hyperbolic equation of first order for the location 
of the interface between clear fluid and suspension. Local multivaluedness of the 
solution is removed by inserting shocks. Such a shock is a model for a small region 
where the slope of the interface, as scaled in the lubrication approximation, is large. 
Two problems are solved: batch settling and a case where the suspension is pumped 
into a conical channel that is initially filled with clear fluid. In  the batch-settling case, 
the solution is quite similar to that computed by Herbolzheimer t Acrivos for settling 
due to a constant gravity field in a narrow tilted channel. For large values of the 
Taylor number, it is found that the blocking of radial flow outside the Ekman layers 
leads to a somewhat slower separation process than expected. In  the Glling problem, 
the character of the solution is distinctly different for Taylor numbers of order unity 
and large values of this parameter. 

1. Introduction 
This paper considers axisymmetric settling of a dilute monodisperse suspension in 

the centrifugal force field between two narrowly spaced rotating conical disks. 
Processes of this kind are of importance in separation technology. In  many designs 
for industrial centrifuges (Sokolov 1971, Svarovsky 1981, Hsu 1981) the separation 
efficiency is significantly enhanced by placing a stack of conical disks in front of the 
outlet as shown in figure 1. This design seems to have been first proposed by von 
Bechtholsheim (Patenschrift No. 48615, Klasse 82, Kaiserliches Patentamt, 1889). 
Because von Bechtholsheim’s findings were not published in an archival journal, the 
discovery of the physical mechanism made use of in his design has instead been 
ascribed to Boycott (1920). In an experimental study of settling of blood corpuscles 
in a test-tube, Boycott found that the time for complete separation of particles and 
fluid is considerably smaller in a tilted tube than in a tube that is aligned with the 
direction of gravity. The reason is that the tilting of the tube increases the projection 
on a horizontal plane of the volume of suspension, which will increase the rate of 
production of clear fluid. Equivalently, one may say that the path of fall of the 

t Present address: Department of Hydromechanics, The Royal Institute of Technology, 
Stockholm, S-10044 Sweden. 
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FIGURE 1. Sectional view of an industrial separator with a stack of narrowly spaced conical disks, 
From The Evolution oj the Alfa-Lava1 Centrijugal Separator (Tumba, Sweden: Alfa-Lava1 AB). 

particles in the suspension is decreased in the tilted tube. A thorough discussion of 
the kinematics of this phenomenon is given by Acrivos & Herbolzheimer (1979). 

The first analytical study, based on fundamental principles of fluid mechanics, of 
effects of inclined walls on settling is the work by Probstein, Yung & Hicks (1977). 
These authors, who investigated steadily operating lamella settlers, pointed out that 
not only the clear fluid but also the suspension and the sediment may, in many cases, 
be regarded as Newtonian fluids of different densities and viscosities. The concentration 
of suspended material in the suspension was assumed to be constant and the settling 
velocity was assumed to be given by an empirically modified Stokes law. Probstein 
et al. (1977) also performed experiments and good agreement with theory was found. 
Further developments of this work have been reported by Leung & Probstein (1983). 
Several of the basic ideas in the theoretical modelling by Probstein et al. (1977) will 
be used also in the present work. 

Time-dependent batch settling was considered by Acrivos & Herboliheimer (1979) 
and Herbolzheimer & Acrivos (1981). These studies were both theoretical and 
experimental. Attention was restricted to moderately dilute suspensions so that 
effects of the sediment could be ignored in the theoretical analysis, which, to a large 
extent, otherwise rests on similar assumptions as those made by Probstein et at. (1977). 
Acrivos & Herbolzheimer (1979) investigated settling in vessels with an aspect ratio 
of order unity and showed, in agreement with the well-known kinematic PNK-model, 
first proposed by Ponder (1925) and, independently, by Nakamura & Kuroda (1937), 
that there is a thin layer of clear fluid with boundary-layer-like flow beneath the 
downward-facing wall of the vessel. Herbolzheimer & Acrivos (1981) studied settling 
in narrow channels such that the distance between the walls of the channel is of the 
same order of magnitude as the thickness of the clear-fluid layer. A correction of finite 
magnitude of the PNK-theory, due to the small distance between the walls of the 
channel, was computed. The experimental observations in these studies were in good 
agreement with the theoretical predictions. 

Batch settling due to gravity in vessels of aspect ratio 0(1), such as those con- 
sidered by Acrivos & Herbolzheimer (1979), but in a different parameter regime for 
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the dynamics of the flow, was studied theoretically by Schneider (1982). Roughly 
speaking, one may say that viscous effects are weaker in the cases studied by 
Schneider, who showed that this results in a different structure of the motion of both 
the clear-fluid layer and the suspension. The study by Schneider was also extended 
to suspensions of quite large concentrations in which propagation of concentration 
waves is known to occur (Kynch 1952). Experimental verification of Schneider’s 
predictions has been given by Schaflinger (1984). 

Theoretical studies of batch settling in rotating containers have been carried out 
by Greenspan (1983) and Anestis & Schneider (1983). These authors demonstrated 
that settling in a centrifugal field, which varies in space, is distinctly different from 
settling in a constant gravitational field. Among other things, the concentration of 
particles in the suspension can no longer be taken as constant because the settling 
velocity varies with the distance from the axis of rotation. Both of these studies were 
concerned with geometries where the phenomena discovered by von Bechtholsheim 
and Boycott (1920) are of no importance. 

The present work is an extension of the theoretical results of Herbolzheimer & 
Acrivos (1981) in that the channel is rotating rapidly. The constant gravity force is 
thus replaced by a variable centrifugal force. Furthermore, for small Rossby numbers 
and moderately large Taylor numbers, which is a common parameter range in 
applications, rotation adds further significant modifications such as the presence of 
Ekman layers and regions of nearly inviscid geostrophic flow. A difference of some 
importance, which has nothing to do with rotation, between the present work and 
that by Herbolzheimer & Acrivos (1981) is the construction of shocks to remove 
non-uniqueness of the solution. 

The disposition of the paper is the following : $2 contains the formulation of the 
problem, which partly quite closely follows that given by Acrivos & Herbolzheimer 
(1979). Batch settling is considered in $3  where the computation of shocks is also 
discussed in some detail. The behaviour of a suspension that enters a channel, which 
is initially filled with clear fluid, is considered in 54. The main conclusions of the paper 
are summarized in $5.  The mathematics leading to the results given in $83 and 4 is, 
in certain cases, lengthy but straightforward and so parts of the derivations are only 
briefly described in the text or simply deleted. 

2. Formulation 
The sedimentation phenomena to be studied take place between two parallel 

conical disks, whose cone angle is a (see figure 2a).  The outer edges of the disks are 
at a distance 1 sina from the axis of symmetry. The gap width between the disks is 
h and in what follows it is assumed that h/Z Q 1. The distance between the inner edges 
of the disks and the axis of symmetry is kl sina where 0 < k < 1.  

The disks rotate with the constant angular velocity 52 around the axis of symmetry. 
An orthogonal coordinate system (z*, y*, O ) ,  where asterisks denote dimensional 
quantities, will be used (see figure 2a) .  The coordinate system is rotating with the 
disks. The unit vectors e, and e, are parallel with the disks and e, is perpendicular 
to  the axis of rotation. ey is perpendicular to the disks. The origin is where the 
extension of the outer disk intersects the axis of rotation. 

The settling two-phase fluid considered here is a dilute monodisperse suspension 
of small solid spherical particles (or small incompressible drops) in an incompressible 
Newtonian fluid. It is assumed, as was done by Probstein et al. (1977) and others, 
that the suspension itself can be regarded as a Newtonian fluid with a viscosity that 
depends on the local particle concentration. There is experimental evidence that this 

18 F L Y  166 
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(b) 

FIGURE 2. (a) Sketch of conical channel and definition of unit vectors. ( b )  Sectional view of the 
channel between the inner and outer disk showing the flow configuration. 

approximation is reasonable for particle volume fractions less than 0.3 (Chan & 
Powell 1984). In terms of the volume-averaged (Drew 1983) or time-averaged (Ishii 
1975) velocities up*, up* and densities p;, pp* of the particles and the suspending fluid 
respectively, the bulk average velocity u* and density p* of the suspension are 
defined as 

(2.1) [u*,p*I = (1 -4 [up*,Pf*l+c[up*,Pp*l, 
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where c is the volumetric concentration of particles. Conservation of particles and 
suspending fluid implies that (see e.g. Drew 1983) 

ac 
@+V*.(CU,*) = 0, 

ac 
at* - -+V**[( l -c )up*]  = 0. 

( 2 . 2 ~ )  

(2.2b) 

It follows from (2.2a, b) and (2.1) that 

v**u* = 0. (2.3) 

The motion of the particles relative to the suspending fluid due to the centrifugal 
force is assumed to be given by the following empirical expression for the 'slip 
velocity ' : 

u,* = up*-u* = vs(r*) F - e,, (2.4) (3 
where ws(r*) is the Stokes settling velocity for a single particle at a distance r* from 
the axis of rotation. F is a non-dimensional empirically determined function that 
accounts for particle interactions (Barnes & Mizrahi 1973). co is a reference concen- 
tration that will be specified later and er is the unit vector in the radial direction. 
For solid spherical particles 

2(p,*-pp*) (aQ)2r* 

9P 
ws(r*) = 7 

where p is the viscosity of the suspending fluid and a is the particle radius. Equation 
(2.5) is readily generalized to fluid droplets of a Newtonian fluid (see e.g. Batchelor 
1967, p. 236). It should be noted that the effect of concentration on the slip motion, 
which is described by the function F i n  (2.4), in the general case leads to propagation 
of concentration waves in the suspension (Kynch 1952, Schneider 1982). In the 
present problem, though, as well as in the closely related problems considered by, 
e.g. Herbolzheimer & Acrivos (1981) and Leung & Probstein (1983), it becomes 
apparent, as will be discussed later, that such waves do not appear. Therefore, the 
function F only appears as a numerical correction of the Stokes settling velocity and 
can be absorbed in the scaling (see (2.27a7 b) below). 

The slip motion of the particles in the direction of the centrifugal force leads to 
the formation of a layer of clear fluid adjacent to the inner disk, see figure 2 (b). The 
interface between clear fluid and suspension is denoted y* = 6*(z*, t* ) .  On the outer 
disk, particles will accumulate and form a layer of sediment. This layer is heavier 
than the suspension and will thus tend to move radially outwards owing to the 
centrifugal force. In general, the sediment layer may therefore exert a shear stress 
on the suspension. However, if the sediment layer is thin, which would be the case 
for dilute suspensions, this effect can on reasonable grounds be expected to be weak. 
Following Herbolzheimer & Acrivos (1981), this is assumed to be the case in what 
follows. (Other possible effects of the sediment layer will be discussed later.) Some 
brief comments on the validity of this assumption may be in order. For the dilute 
suspensions of rigid spheres investigated experimentally by Herbolzheimer & Acrivos 
(1981), justification is provided by the good agreement between theory and experi- 
ment.? In the case of suspensions of droplets, no experimental information seems to 

t Some crude, exploratory tests carried out by the authors for a non-rotating narrow channel, 
also confirm that the sediment has little effect on the flow. 

16-2 



478 G. Amberg, A .  A .  Dahlkild, F.  H .  Bark and D .  S.  Henningson 

be available. However, if one assumes that the drops in the sediment layer coalesce 
and form a layer of a Newtonian fluid with a viscosity that is of the same order of 
magnitude as that of the suspension, some theoretical estimates can be made. The 
details are lengthy and not given here. For the parameter range considered in the 
present work, which is specified by (2.6) and (2.7) below, one finds that the errors 
in the solutions given in $$3 and 4 are - c and - c3 respectively. 

Another simplification, which is also taken from Herbolzheimer & Acrivos (1981), 
is that the viscosities of the clear fluid and the suspension are assumed to be the same. 
For small concentrations this is justified by Einstein’s formula. For moderately small 
concentrations, co = 0.1 say, the validity of this assumption may be disputable. On 
the other hand, it seems to be very unlikely that a relative difference in viscosity of 
moderate magnitude will introduce any essential new physical effect. In fact, the good 
agreement between theory and experiment in the work by Herbolzheimer & Acrivos 
(1981) indicates strongly that the difference in viscosity between clear fluid and 
suspension is of minor importance, even for moderately small concentrations. 

The following non-dimensional parameters will be used : 

R =  Po* V S ( 4  h , (I 
Go( p; -pF)  PB2 

P V S ( 4  
A =  

Reynolds number : 
P 

Taylor number : 
p: Bh2 sin a T= , 

P J 
wherep is the viscosity and p: = p*(co). A is an estimate of the ratio between buoyancy 
forces ( - co( pp* -pF) 1Q2) and viscous forces ( - pvs/Z2) that are caused by shear on 
the lengthscale 1. In most applications, A is very large; values of order lo7 are 
common. The appearance of boundary-layer-like flows in containers that are charac- 
terized by a single lengthscale 1 is a consequence of the fact that A is very large. 
Typical orders of magnitude of the Reynolds and Taylor numbers are, in many 
practical cases, R 4 1 and T - 1 or larger. The reason why centrifuges are designed 
in this way is that the efficiency of the machine increases as the retention time of 
the particles in the suspension decreases. For a given size of centrifuge, the efficiency 
will thus increase with the number of disks, i.e. decreasing values of h, and, of course, 
with increasing values of a. The flow between the disks is therefore often such that 
viscous forces, due to the narrow spacing, dominate inertial forces except for the 
Coriolis force, which may be significant due to the rapid rotation. For typical numbers 
and a more thorough discussion of technical details, the reader is referred to the 
engineering text-books by Sokolov (1971), Svarovsky (1971) and Hsu (1981). In 
summary, the following parameter regime will be considered in the present work: 

A-l-41, R41, Tzl. (2.7) 
The distance between the disks is assumed to be small in the following sense: 

which is often the case in applications. If Coriolis effects are negligible, this is the 
limit in which viscous forces are of the same order of magnitude as buoyancy forces 
across the whole channel. 
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The following scales will be used: 

time h/VS(b 

length in the e, direction 

length in the e, direction 

velocity in the e, direction 

velocity in the e, and e, directions 

reduced pressure A P V S ( l ) / R  

concentration CO 9 

density P:. 

h, 

1, 

VdO, 

ff+VS(l)/& 

The non-dimensional radius and bulk-velocity vectors and the gradient operator are 
thus given by the following expressions : 

x = xe, - A-%ye, , 

u = u,e,+A-%u,e,+u,e,, 

a J  a 
ax g a y  

V =A-%,-+e -. 

(2.10) 

Unless explicitly stated otherwise, in the following all quantities are dimensionless. 
The equation of continuity for the suspended particles ( 2 . 2 ~ )  can be written in the 

following form 

!!! + [u + (F + $F) us,] V$ = - 2A-%$F, (2.11) at 

where $ is the concentration and uso is the slip velocity for zero concentration. In  
the derivation of (2.11), use has been made of the relation 

V ' U , ~  = an-%. (2.12) 

The characteristic form of (2.11) is 

dx - = u+(F+$F')u,,. 
dt 

( 2 . 1 3 ~ )  

(2.13b) 

The velocity of concentration waves dx/dt is precisely the local bulk velocity u plus 
the wave speed in the absence of bulk motion. Thus (2.13b) simply means that 
concentration waves, which were first discussed by Kynch (1952), are advected by 
the local bulk velocity. The small term in the right-hand side of ( 2 . 1 3 ~ )  implies that 
for t - 1, the concentration decreases slightly along the characteristic curves defined 
by (2.13b). The reason is that the velocity field uso is divergent (see 2.12), i.e. 
the particle cloud behaves like an expanding gas. However, on the timescale 
considered, the concentration variation is only - A-t .  If the suspension is initially 
of uniform concentration, it will therefore approximately remain so. Only cases such 
as these will be considered in the present work and henceforth the approximate value 
4 = 1 will be used for the concentration in the suspension. For h - 111, i.e. in a 
channel of aspect ratio - 1, one would have to account for a finite variation of the 



480 G. Amberg, A .  A .  Dahlkild, F.  H .  Bark and D .  S .  Henningson 

concentration. Problems where this is the case have been considered by Greenspan 
(1983) and Anestis & Schneider (1983). 

The presence of an interface y = 6(x, t )  between suspension and clear fluid, across 
which $ changes discontinuously, has not been accounted for in the previous 
arguments. Such an interface, which is a kinematic shock, may be unstable and 
thereby act as a source for concentration waves. (This type of instability has nothing 
to do with the hydrodynamic stability of the bulk motion.) In  settling without bulk 
motion, this situation is known to prevail under certain circumstances for the 
interface between suspension and sediment (Kynch 1952, Schneider 1982, Anestis & 
Schneider 1983) and so is worth some consideration. 

The stability condition for a kinematic shock y = ~ ( x ,  t ) ,  say, that separates two 
regions of concentrations $1 and $2 respectively, is locally the same as if the bulk 
motion were absent.? This follows directly from the aforementioned result that 
concentration waves are locally advected by the bulk velocity, which is continuous 
across a shock. The physical reason is, of course, that the slip velocity is independent 
of the bulk velocity. The stability condition is thus locally the same as that given 
by Kynch (1952). A more general necessary and sufficient stability condition for 
shocks of this type has been given by, among others, Lax (1973). In terms of the unit 
normal vector 

and the function f($) = $P($), Lax's condition can be written 

for $1 < $ < $2 and where $1,2 are chosen such that n points into the region of 
concentration 9,. If the density stratification is stable, i.e. nous, > 0, the geometrical 
interpretation of (2.14) is that the secant between the points ($1, f($l)) and (q58,f($e)) 
is everywhere below the curve f($). This seems to always be the case for the 
clear fluid-suspension interface. Concentration waves from the interface between 
suspension and sediment were investigated in detail by Schneider (1982), who showed 
that such waves do not occur if the volumetric concentration co 5 0.15. This will be 
assumed to be the case in what follows. 

It should be noted, though, that a non-zero bulk flow in principle may cause 
concentration waves to appear by folding of an interface over itself. This would lead 
to an unstable density stratification (with n*us0 < 0) along some part of the interface, 
which would then disintegrate by waves of 'expansion' type. (The unstable density 
stratification would presumably also lead to hydrodynamic instability of the motion). 
In the present work, however, only stably stratified flows occur. 

Before the dynamics of the flow is considered some kinematical relations 
involving shocks will be derived for later use. Conservation of suspended particles 
across a shock gives the following Rankine-Hugoniot relation 

$l(n'Upl- U )  = $2(nyJ2- U ) ,  (2.15) 

where u = ""I[ at 1 +@7 (2.16) 

t It will turn out later that regions where the slope of the interface is locally very large need 
special consideration. This matter is discussed at the end of this section. 
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is the velocity of the shock. Combination of the non-dimensional version of (2.4) and 
(2.15) gives 

(2.17) 

If one takes the limits $-+dl and q5+q52 in (2.14), adds n-u to each member and 
combines the result with (2.13b) and (2.17), one finds 

(2.18) 

This necessary condition for stability means that characteristics should either be 
directed into, or be tangential to, the shock path. 

The non-dimensional equations for conservation of momentum and mass for the 
bulk motion are (with q5 = 1 for y < 6, q5 = 0 for y > 6) 

Atlip($) -+- Du 2Tp(4)e,xu = - V 1 7 - V x V x u - ( 1 - $ ) e , x ( e z x x ) ,  ( 2 . 1 9 ~ )  
Dt sina 

v-u = 0, (2.19b) 

where e, = Jz/lal and the non-dimensional reduced pressure 17 is defined in terms of 
the dimensional pressure p* as 

(2.20) 

Simplification of ( 2 . 1 9 ~ )  is necessary. It follows from (2.10) that IDu/Dtl - A-4. The 
convective acceleration is thus - R 4 1 and can be neglected. The variation of the 
density with q5 in the Coriolis force will also be neglected (cf. the Boussinesq 
approximation), i.e. p(q5) = 1 in what follows. Substitution of (2.10) for x, u and V 
gives, to lowest order in A-4, the following approximate version of the system 
(2.19a, b) : 

(2.21a) -2Tu8 = --+7-(l-q5)x6s sin2a, 
an a2ux 
ax ay 

an 
a Y  ’ 

O = - -  

i a  au 
--xu,+-J = 0. 
x ax a Y  

(2.21 b)  

(2.21 c )  

(2.21d) 

If the velocity and pressure fields in the clear fluid are denoted by the superscript c 
and the corresponding quantities in the suspension by the superscript s, the 
boundary conditions for the solution of (2.21a-d) can be written 

us = 0, y = 0, u c = o ,  y = l ,  (2.22 a )  

us = uc, y = 8, (2.223) 

a a 
- (u”, u;) = - (u;, U S ) ,  y = 6, 
aY a Y  

(2.22c) 

lP = IT‘, y = 8. (2.22d) 
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Equations (2.22 c,  d) are the lowest-order approximations of the continuity conditions 
for normal and shear stresses across the interface. 

If 6 is regarded as known, it is straightforward to calculate the velocity field in 
terms of the pressure field from (2.21 a)-(2.224. The pressure field is determined by 
specifying the total volume flux in the channel 

2x2 sina (j: u:dy+j8' uzdy) = Q. (2.23) 

Owing to the approximations made in the derivation of (2.21 a-c), which are the same 
as those made in lubrication theory, no derivatives with respect to x appear to lowest 
order. No boundary conditions for the velocity field can therefore be imposed at 
x = k, 1.  It has thus been implicitly assumed that the flow adjusts itself to lubrication 
flow in boundary-layer-like corner regions of length - A-4 at the ends of the plates 
(cf. DiPrima 1969). 

If the velocity field is known in terms of 8, which is so far unknown, an equation 
for 6 can be derived from the lowest-order approximations of (2.16) and (2.17) with 
y52 = 1 and 9, = 0. The result is 

as as 
ax ,+@- = ui-+xF(l) sin2a. (2.24) 

It should be noted that the slip velocity in the x-direction, which is a factor A-4 
smaller than the bulk velocity in the same direction, has been neglected in (2.24). 

in (2.24), a more convenient form 
can be obtained in terms of the local volume flux of suspension 

Instead of using the velocity components u:, 

q(x, 6(x, t ) )  = 2xx sina u: dy. (2.25) 

Some properties of the function q should be noted. It can be shown that q can be 
written 

q = xzqB(4 + Q q Q ( 4 ,  (2.26) 

where the functions qB and qQ have simple physical interpretations, cf. Leung & 
Probstein (1983). (The algebraic expressions are complicated and are therefore given 
in the Appendix.) In batch settling, the ends of the channel are closed and Q = 0. 
The fluid motion that corresponds to the volume flux x2qB is driven by the difference 
in density between the suspension and the clear fluid. This motion can be characterized 
as long, viscous gravity waves of finite amplitude. Velocity profiles u, and uo for a 
case where Coriolis effects are significant, i.e. a rather large value of T, are shown 
in figure 3. For reasons that are discussed later, no graph of uy is shown. The flow 
consists of three Ekman layers, one at each solid surface and one at  the interface, 
that are separated by regions of inviscid geostrophic flow. For general properties of 
Ekman layers and geostrophic flows, the reader is referred to the monograph by 
Greenspan (1968). The function qB(s) is shown in figure 5 for different values of T. 

The velocity field corresponding to the volume flux &qQ is the same as that for 
the flow of a homogeneous fluid that is driven by a difference in pressure between 
the ends of the disks. This velocity field, which can be described as a rotation-modified 
Poiseuille flow (uy = 0), is thus independent of the location of the interface. Typical 
velocity profiles are shown in figure 4. In  this case only two Ekman layers appear. 
Figure 12 shows qo(S) for different values of T. 

It should be pointed out that, for large but finite values of T, the lubrication 

I," 
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FIQTJRE 3. Velocity profiles for the batch caw (& = 0). The location of the interface is denoted by 
--- . 8 = 0.5, T = 144. 

0 
UZ 

I 

Ue 

FIQTJRE 4. Velocity profiles for the filling problem. & < 0, I&I - 1, E 6 1, T = 144. 

approximation does not, in general, give a correct description of the geostrophic flow 
(Bark, Johansson & Carlsson 1984). One fhds that the Taylor-Proudman theorem 
(see Greenspan 1968, p. 2) is violated. In  the lubrication approximation, the velocity 
and pressure fields outside the Ekman layers are independent of y whereas these 
quantities, accordin to  the Taylor-Proudman theorem, should be constant along the 

in u,, ue and p of order A -4. The velocity component uy on the other hand is incorrect 
to lowest order. Fortunately, this velocity component is small and a detailed analysis, 
which is tedious and therefore not given here, shows that this leads to an error N A-f 
in the results given later in this paper. 

By expressing the velocity components in terms of q, using the normalized variables 

t = +[P(1) sin2a]t, (2.27a) 

direction of e,. For a - 1, however, it  can be shown that this leads to relative errors 

(2.273) 
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and dropping overbars one finds that (2.24) can be written 
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(2.28) 

This type of equation has received much attention in the literature on kinematic 
waves, which were first studied by Lighthill & Whitham (1955). For later reviews 
of the subject the reader is referred to Whitham (1974) and Kluwick (1977). 

The characteristic form of (2.28) is 

_ -  dS - - x - - (  12 ) 
dt ax 8' 

( 2 . 2 9 ~ )  

(2.29 b )  

Using the expression (2.26) for p, one finds the following solution of (2.29a, b ) :  

ds' 
x(# )  + 2q,(s') ' 

(2.30 a )  

(2.30 b )  

where St is the prescribed value of 13 at the point t = t,, x = x,. This specification of 
13, needs some consideration. 

Two problems will be solved in the present work. The first is batch settling and 
the second is the setting up of a continuous settling process by pumping a 
homogeneous suspension into a channel that is initially filled with clear fluid. In  the 
second problem, which will henceforth be referred to as the filling problem, the 
suspension enters the channel from the outer end. In both of these problems, one 
obviously has to prescribe S on t = 0 ,  k < x < 1. However, as will be apparent from 
the next two sections, one also has to prescribe S at x = 1 for all values oft. Otherwise 
only a part of the region t > 0 ,  k < x < 1 is accessible for characteristics, i.e. the 
problem would be ill-posed. For the batch settling problem, Acrivos & Herbolzheimer 
(1979) showed, by using order-of-magnitude arguments for the velocity components 
in the outer end region, that one must require 

S ( 1 , t )  = 1.  (2.31) 

Also, in the filling problem, where the whole channel cross-section at the outer end 
contains suspension for all values of t, (2.31) must be prescribed as a boundary 
condition. 

The following initial conditions are prescribed. 

I. Batch settling problem 

S(x,O) = 1, k < x < 1; 0 < S(k,O) < 1. ( 2 . 3 2 ~ )  

II. Filling problem 

S ( x , O ) = O , k G x < l ;  O < S ( l , O ) < l .  (2.32b) 

The second part of ( 2 . 3 2 ~ )  may at  first sight seem peculiar. It means that one 
prescribes an infinitesimally thin region (0 < y < 1, k < x < k+O)  of clear fluid at 
the inner end of the channel. Physically, this can have no effect on either the settling 
or the bulk motion in the channel. However, the mathematical formulation of the 
problem should include the effect of the closed end at x = k .  Due to the properties 
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of the characteristics, which are discussed in detail in the next section, one finds that 
no boundary condition can be prescribed at x = k. The effect of the closed end must 
consequently appear in the initial condition and (2.32a) is the proper formulation 
in the present problem. Exactly the same situation arises in the problem for settling 
due to gravity without bulk motion, which was first considered by Kynch (1952). In 
that problem, the presence of a horizontal boundary is accounted for by prescribing 
an infinitesimal layer of sediment on the boundary at the initial instant. It should 
be pointed out that imposing (2.32a) is only formally different from the treatment 
of the closed end by Herbolzheimer & Acrivos (1981). 

The formulation of the initial condition (2.323) for the filling problem is straight- 
forward. Regardless of the details of the flow in the inlet region at  the outer end, 
which is especially complex if Coriolis effects are significant (cf. Ungarish & Greenspan 
1984), the variation of the interface will initially appear as a discontinuity in the 
lubrication approximation. 

As is indicated by (2.32a, a), kinematic shocks will appear in the solution of (2.28). 
Such a shock in 6 is, of course, also a shock for the solution +(x,t) of (2.11). 
Unfortunately, the necessary stability criterion (2.18) for a shock in is, in general, 
not fulfilled at a shock in Seven if (2.14) is fulfilled. The reason is that the bulk velocity 
is discontinuous across a shock in 6. However, this discrepancy is a harmless 
consequence of the use of the lubrication approximation for the computation of the 
bulk motion. A shock in 6 should be regarded as a simplified model for a local 
continuous variation of 6 on the lengthscale h (or any other lengthscale that is 
significantly smaller than 1) .  The bulk velocity associated with such a variation of 
6 is, of course, continuous and the shock in + will be stable, provided that the interface 
does not fold over itself. It is henceforth assumed that this is the case. For low 
Reynolds numbers, which are assumed to prevail in the present work, this rather 
strong assumption can be given some justification if Coriolis effects and geometrical 
effects due to circumferential curvature are neglected and the settling velocity is taken 
as constant, as in the non-rotating case considered by Herbolzheimer & Acrivos 
(1981). These restrictions are made only for mathematical simplicity; there seems to 
be no physical or mathematical reason why the argument should not be valid also 
for the case considered in the present work. The problem considered by Herbolzheimer 
& Acrivos is recovered from (2.28) by putting T = 0 and x = 1 everywhere except 
in 6(x, t ) .  If the next term in the expansion for long waves is included in the derivation 
(see e.g. Kluwick 1977), one finds an equation of the formt 

1 as 
h a [  I ax ax 

-+-= as a m  - l + - -  (tana)q(6)---(cotana)d , 
at ax 

(2.33) 

where q(6) = $Y'( 1 - ~ 3 ) ~ .  This equation has been solved numerically for small values 
of h/l in some test cases. As can be expected, the solution of the hyperbolic equation 
(2.28), in the special case described above, approximates, with an error O(h/ l ) ,  the 
solution of the parabolic equation (2.33) for a&/ax 4 1 .  A shock in the solution of (2.28) 
appears in the solution of (2.33) as a rapid but continuous variation of 6 such that 
the stratification is stable. Thus, in the limit h/1+0, solutions of the more realistic 
equation (2.33) seem to reduce to the discontinuous solutions of equation (2.28) in 
such a way that the jump in + can be regarded as a stable shock also at a shock 
in 6. 

t The derivation of (2.33) and the computations leading to the conclusions outlined above have 
been carried out by C. Johansson (private communication). This will be reported on elsewhere. 
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0 8 1 

FIGURE 5. The function qB(b) for some values of T. 

3. Batch settling (& = 0 )  
The exact solution (2.30a, b) with a,, zt and tr chosen such that (2.31) and (2.32a) 

are fulfilled is quite complicated. However, one can find an approximate but 
physically more transparent solution. The basis for the approximation is that, for 
A - 1 and tan a - 1 ,  the numerical values of qB, the local volume flux of suspension, 
and its lowest-order derivatives with respect to 6 are fortuitously small. This is 
somewhat surprising because these quantities have been scaled to be of order unity. 
Figure 5 shows qB as function of S for various values of T. 

It can be shown that 

( 3 . l a )  

and thus 

(3.1 b)  
A3 tan a A3 tan a 

max{$93(l-6)3} = - 
192F( 1) ' 

qB < max {qB(6, T = 0) )  = - 
F(1)  

For the large values of T, max {qB) has the following asymptotic behaviour : 

(3.1 c )  

For a given value of T, one can define the following quantities: 

and assume that 6 and z can be expanded in powers of e :  

N -1 

Some comments on the circumstances under which 8 is not small should be made. 
According to (3 . lb )  this is the case if the product As t ana  is large, i.e. the channel 
is wide and/or the walls of the channel are nearly perpendicular to the axis of rotation. 
The reason why e increases with w for fixed value of a + in is simply that the 
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t exact 6 approx. 6 exact x approx. x 

0.05 0.9750 0.9750 0.4999 0.4999 
0.45 0.7700 0.7704 0.4664 0.4864 
0.90 0.5067 0.5139 0.4174 0.4175 
1.35 0.2418 0.2479 0.4631 0.4660 
1.80 0.0109 0.0082 0.4999 0.5069 

TABLE 1. Numerical comparison between (2.300, b )  and (3.40, b )  for k = 0.5, T = 4, E = 0.10 

lengthscale for the shear increases. The buoyancy forces, which are driving the 
motion, are of the same order of magnitude independently of 6. The viscous forces, 
on the other hand, decrease with increasing values of A, which results in an 
increased volume flux of suspension. The limit 6 - 1 and a+ is spurious. It means 
that the interface is perpendicular to the walls of the channel. No buoyancy-driven 
flow will occur at all and the problem formulation in the previous section does not 
make sense. Henceforth only cases where A - 1 and tana  - 1 will be considered. 

The fact that qB, and hence IS, decreases with increasing values of T (see 3.1 a) has 
a simple physical interpretation. For large values of T, this is a consequence of the 
splitting, due to Coriolis effects, of the flow into Ekman layers of thickness - 
and regions of inviscid geostrophic flow as shown in figure 3. It can readily be shown 
that the large viscous shear force in the Ekman layers at the walls causes the velocity 
field to be weaker by a factor - T-l compared with cases where T - 1 or smaller. 
Furthermore, because the flow is axisymmetric, no radial volume flux is carried by 
the geostrophic flow (Greenspan 1968, p. 108). The radial transport will thus take 
place only in the thin Ekman layers, which means that qB will be decreased by another 
factor - Ti, cf. ( 3 . 1 ~ ) .  

Substitution of (3.3) into (2.30a, b) gives, after some algebra, 

xo = xot ; 8, = so, - (t - t g )  ZOf ( 3 . 4 ~ )  

(3.4c) 

where 82, and xZt, I = 0, 1,2, are prescribed values to zeroth first and second order of 
Sand x, respectively, for t = t,. The solution depends very sensitively on the accuracy 
of the approximation of the characteristics. x is therefore computed to O(sa) whereas 
two terms in the series for 6 was found to be sufficient. A comparison between (3.4a, b) 
and a numerical evaluation of (2.30a,b) is shown in table 1. It is unclear whether 
the series (3.3) are convergent or asymptotic but numerical experiments showed 
conclusively that the first few terms approximate the exact solution with increasing 
accuracy for decreasing values of IS. 

As the buoyancy-driven volume flux of suspension qB is small, the advection of 
particles is weak compared with the settling velocity. Coriolis effects will, according 
to (3.1 a), make the advection even weaker. This means that the trajectories of the 
settling particles are approximately straight lines in the direction of the centrifugal 
force. Consequently, the characteristics are approximately straight lines that are 
parallel to the t-axis (cf. 3 . 4 ~ ) .  The boundary condition (2.31) and the initial condition 
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(2.32a) at  x = k will therefore only influence the solution in the regions x = 1 -O(E)  
and x = k+O(E) respectively. The solution (2.30a, b ) ,  evaluated in these regions, will 
consequently make sense only if these regions are significantly larger than the corner 
regions where the lubrication approximation breaks down, i.e. if A - i  4 E .  For T - 1, 
this is also a necessary condition for neglecting the slip velocity in (2.24) where it 
has been assumed that luszl 4 luil, which is not true if luil N E - A-4. For large values 
of T ,  these conditions are different. In the former condition, E - T-g leads to T 4 A;. 
The latter condition gives, with luil - T-l,t the less restrictive requirement T 4 A+. 

In the non-rotating case considered by Herbolzheimer & Acrivos (1981), two shocks 
appear in the solution. One shock is formed immediately at x = k .  The other shock 
is formed in the region x = 1 - O ( E )  after a finite time. These shocks have to be inserted 
to remove the non-uniqueness of the solution that appears when characteristics are 
intersecting. Physical explanations of the mechanisms causing the formation of these 
shocks were given by Herbolzheimer & Acrivos (1981). Similar shocks will appear also 
in the case considered in the present work. 

If a shock path is denoted by x = s(t)  and the notation 

6* = 6(s*O,t)  

is used, conservation of mass requires that (see e.g. Whitham 1974, p. 30) 

By far the most common situation in kinematic wave problems is that the 
characteristics on which 6* are computed are directed into the shock path from each 
side. If s ( t )  and @ ( t )  are known for t = 7 ,  then s(7+d7) can be computed from (3.5). 
S* (7 + d7) can then be computed on the characteristics that cross at x = S(T + d7) and 
the computation can be continued step by step. Unfortunately, s and 6* cannot 
always be computed by this procedure in the present case since the slope of the 
characteristics, which is the propagation velocity for wavelets on the interface, is not 
a monotonic function of 6. The construction of the shock at  x = k clearly illustrates 
the difficulties. 

Figure 6(a) shows the triple-valued solution in the neighbourhood of x = k for a 
small value oft .  The characteristic diagram is shown in figure 6(b) .  There is a fan 
of intersecting characteristics from t = 0, x = k and a set of characteristics from t = 0, 
x > k .  The latter characteristics do not intersect each other but intersect those in 
the fan. The non-uniqueness must be removed by inserting a shock having a path 
such as that shown in figure 6(b) .  According to the discussion following (2.32a), the 
discontinuous variation of 6 at x = k ,  which gives rise to the fan, should have no 
physical effect on the settling and the bulk motion in the channel. It may seem 
spurious that a discontinuous variation of 6 in (2 .32~)  was then prescribed in the first 
place. The reason is simply that the formation of a shock at x = k should appear from 
the mathematical solution of the initial-value problem. If the discontinuity in (2 .32~)  
is deleted, the (unique) solution is determined on the characteristics from t = 0, x > k .  
However, that solution gives qB =+ 0 at x = k ,  which is physically unreasonable. 
Therefore a shock is constructed where 6+ is determined on the characteristics that 
emanate from t = 0, x > k. However, figure 6(b)  shows that there are then no 

t This order-of-magnitude relation is not true in regions of geostrophic flow. However, if it holds 
in the Ekman layers and if h - 1 ,  one can show that the error in the computation of e.g S(z, t )  is - A-1. 
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FIQURE 6. (a) Multiple-valued solution near 5 = k for t = 0.1 (k = 0.5, T = 4, E = 0.10). ( b )  
Characteristic diagram for the solution in figure 6(a) : - - -, shock path. (c) Shock construction in 
the (BB, 8)-diagram for the left shock in figure 7. 8, is the left inflexion point. 

characteristics crossing the shock path from the left on which 6- can be determined. 
This means that s and 8' cannot be computed as outlined in the discussion following 
(3.5). The only way to determine the solution in k < 2 < s(t) is to construct 
characteristics that are coming out of the shock path. Unfortunately, unless 6- is 
known, there is an infinite number of such constructions. 

A very similar situation is encountered in gas dynamics. If the equation of state 
of the gas is such that the fundamental derivative? can change sign, the same type 
of difficulty appears. To these author's knowledge, this type of problem was first 
considered mathematically by Wendroff (1972a, b). In scalar hyperbolic problems of 
first order, Wendroff showed that characteristics that are coming out of a shock path 
must do so tangentially. This condition is also implicit (cf. (2.18)) in the work by Lax 
(1973) and in the treatise by Jeffrey (1976, p. 154). In a recent paper, Cramer & 
Kluwick (1984) gave a number of illuminating explicit solutions for weak gas-dynamic 

t This quantity is defined as a(ap)/ap, where a is the speed of sound and p is the density. 

0.6 
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shocks and also showed that these solutions can be regarded as limits of solutions 
of a more realistic problem with diffusive effects included (cf. 2.33). In the present 
problem, Wendroffs condition means that according to (2.26) and (2.29b) one must 
impose 

(3.6) 
8 = 5 - (  aqB 6- ) 

as 
for the shock at 2 = k. If 4 7 )  and S + ( T )  are known, 5(7+d7) and 6 + ( ~ + d 7 )  can be 
computed by the procedure outlined in the discussion following (3.5) whereas 
6-(T+dT) is computed by eliminating 9 between (3 .5)  and (3.6). The shock at 2 = k 
computed by Herbolzheimer & Acrivos (1981) does not fulfil (3 .6) .  

In the present context, i t  may be of interest to point out that a shock construction 
of this kind is, in some cases, necessary for the computation of the clear fluid- 
suspension interface in batch settling in a rotating container, whose aspect ratio is 
of order unity (Anestis & Schneider 1983). 

If 5 is assumed to possess an expansion of the form (3.3) one obtains from (3.5) 
and (3.6), after some algebra, the following set of equations: 

go = 0 (so@) = k ) ,  ( 3 . 7 ~ )  

(3.7b) 

(3 .74  

(3.7d) 

Using the solution (3.4a, b ) ,  this system is readily integrated numerically as indicated 
in the discussion following (3 .2)  and (3 .6) .  For T = 0 and small values oft, one can 
find an approximate solution which may serve to illustrate the structure of the 
solution near 2 = k. The position of the shock and the location of the interface on 
each side of it are given by the expressions 

5 = k+€(t4-$5)+ ..., 

6- = dSl(t8 1, - id+. . . ) .  
6' = 1 - kt-80sk3t4 + . . . , 

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

There is a region 0 < y < 1,  k < 2 < xc( t ) ,  say, where the suspension has settled 
completely. The approximate expression for sc(t) is 

2, = k+s(t4-%9+ ...). (3.8d) 

The construction of the shock in the (&, &)-diagram is shown in figure 6(c ) .  According 
to (3 .5)  and (3 .6) ,  the secant is tangential to the curve dB(S) at 6 = 8-. The shock 
strength decays to zero in a finite time as S* monotonically approach the left inflexion 
point at S = 8,. It can be shown that during the final state of decay 

(3.9) 6- =-q 2 + ++9,+O(lS+ -8-1,). 

This relation is general and holds for any value of T. 
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FIQURE 7. Location of the interface in batch settling for t = 0.3, 0.6, 0.9, 1.2 (k = 0.5, T = 4, 
E = 0.10). 
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FIQURE 8. Characteristic diagram for the solution shown in figure 7 : - - -, shock path; - -, contact 
line z,(t) were &c,, t )  = 0. The suspension outside the end region z = 1 -O(E) has settled for t = t,. 
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X 

FIQURE 9. Streamlines for the solution in figure 7 at t = 0.9. The values of the stream function are 
!P = O.OOOO1 +n x 0.00005, n = 1,2 ... 6: -, streamlines; -, location of the interface. 

Figure 7 shows the solution 6(x, t )  for T = 4. Shock paths, characteristics and the 
location of the contact line zc(t)  are shown in figure 8. For this value of T, the velocity 
field is practically unaffected by the Coriolis force. The only noticeable effect of 
rotation is the z-dependent settling velocity. 

It can be seen from the characteristic diagram in figure 8 that the shock in the region 
z = 1 - O(B)  is, during most of the time, of conventional type, i.e. with characteristics 
that are directed into the shock from both sides. As in the non-rotating case, this 
shock appears after a finite time and, because 6(t )  is the same along the characteristics 
from 2 = 1, t > 0, the interface in the region s( t )  < z < 1 is steady. The shock 



492 G. Arnberg, A. A. Dahlkild, F. H. Bark and D .  8. Henningson 

I 
0.5 025 1 

X 

1 1  -I 
0.5 X 0.525 

0.975 X I 

FIGURE 10. (a) Location of the interface in batch settling fort = 0.2,0.6, 1.0, 1.4 (k = 0.5, T = 64, 
E = 0.0103). (b )  Enlarged view of the left end of figure lO(a) fort = 0.2,0.6,1.0,1.4,1.8. (c) Enlarged 
view of the right end of figure 10(a) for t = 0.2, 0.6, 1.0, 1.4, 1.8. 

approaches asymptotically the closed end a t  x = 1 for large values oft  according to 
the formulas 

s =  1-epsASe-2t+ ..., S+ = l-&uAe*+ ..., 6- =L e-t+ ... , (3.10) 

where p 4 1 is a measure of the deviation from the final state and the constant A - 1 
is determined from the full solution. (3.10) does not mean that, in reality, the 
suspension never settles completely but is merely a consequence of the failure of the 
lubrication approximation to correctly represent the flow in the corner regions. If the 
small amount of suspension in s < x < 1 is disregarded, an appropriate measure of 
the time for complete settling, t = t,, say, is the time required to clarify the suspension 
in the rest of the channel, k < x < s (see figure 8). 

Some distance away from the end regions (see figure 7) the interface attains 
approximately the shape of a cone. Because the settling velocity increases linearly 
with x, the angle of this cone is larger than that of the disks. The slight deviation 
from a conical shape is caused by the weak buoyancy-driven advection of particles. 

Figure 9 shows some streamlines for the case shown in figure 7. Apart from the 
discontinuities across the two shocks, the streamlines are, as expected, closed. 

a a  
Z A P  

4d6 
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FIQURE 11.  (a) Characteristic diagram for the solution shown in figure lo@). - - -, shock path; - -, 
contact line 6(s, t )  = 0, the shock paths in the end regions practically coincide with this curve. t, 
is the time when all suspension outside the right end region z = 1 -O(E) has settled. (a) Enlarged 
view of the left end of figure 1 1  (a). (c) Enlarged view of the right end of figure 11 (a). 

The location of the interface in a case with significant Coriolis effects on the velocity 
field, cf. figure 3, is shown in figure 10 (a-c). Figure 10 (b, c) are enlarged versions of 
figure 10(a) in the end regions. The geometry of the channel is the same as in the 
previous case. The corresponding characteristic diagrams are shown in figure 11 (u-c). 
As was pointed out in the discussion preceding (3.4a, b), a larger value of T implies 
a smaller value of E .  This means that the regions where effects of the closed ends of 
the channel are felt are smaller than in the case shown in figure 7. Also, equivalently, 
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the deviation of the characteristics from straight lines that are parallel with the t-axis 
is smaller in figure 11 (a)  than in figure 8. 

It can be seen from figures 11 (a) and 8 that the dimensionless time t, for complete 
settling is somewhat larger in the rapidly rotating case. The reason is the following: 
because S = 0 in some neighbourhood of 5 = k and the settling is more rapid for larger 
values of 5, there will be a maximum value of S = 8, near the inner end, see figures 
7 and lO(a). (An equivalent definition of t, is that Sm(tF) = 0.) The volume of 
suspension between y = 0 and y = S, tends to be pushed toward larger values of z 
by the centrifugal force, i.e. into a region where the settling is faster. However, this 
motion is retarded by the Coriolis force. Thus, for larger values of T, the main part 
of the suspension tends to remain in a region where the settling is relatively slow. 
However, this effect is much more than compensated for if one considers the 
dimensional values t$. For two identical channels that are rotating with the angular 
velocities 51, and a,, with the corresponding Taylor numbers T, and T, respectively, 
one finds from (2.5), (2.6) and (2.9) that 

(3.11) 

4. The filling problem (& < 0) 
When a suspension of heavy particles in a light liquid is separated in a continuously 

operating centrifuge, the suspension is, in many designs, fed into the disk stack at 
its outer end. There are more-complicated designs where the flow is non-axisymmetric 
(see e.g. Sokolov 1971) but these will not be considered in this work. Under certain 
conditions, the fluid that leaves the disk stack at the inner end will be clarified and 
sediment will come out from the stack at the outer end. For a maximum throughput 
with complete separation, the particles that enter a channel near the inner disk should 
settle on the outer disk near the outlet. This section deals with how such a process 
may be set up in an idealized case where a suspension of constant concentration is 
pumped into a channel that initially contains clear fluid. 

Because the suspending fluid is required to carry the particles a (non-dimensional) 
distance of order unity into the channel, the velocity component in the direct ion 
must be of order unity. The total volume flux Q < 0 must consequently be such that 
I&I N 1. According to (2.26) and (3.2), the total volume flux of suspension can be 

(4.1) 
written 

As the only cases where E % 1 are considered in this work, the dynamical effect of 
the difference in density between suspension and clear fluid can, on reasonable 
grounds, be expected to be small. It can be shown that this may not be so in regions 
where M/az is very large, i.e. regions that in the present work are modelled as shocks. 
Inside such regions, buoyancy is, in certain cases, important even if E -4 1 and I&I - 1. 
Details of this matter will be reported elsewhere. The function qQ(S)  is shown in figure 
12 for some values of T. 

If expansions of the form (3.3) are assumed for 6 and z, the lowest-order solution 
obtained from (2.30a, b) is 

= {2~t+3&[qQ(Sor)-QQ(S,)1}~, (4.2a) 

q = Ez2h(8) + &qQ(@* 

(4.2b) 
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FIGURE 12. The function ps(6) for some values of T. 
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8 exact t approx. t exact x approx. x 
0.99 0.0100 0.0100 0.9983 0.9983 
0.75 0.2762 0.2756 0.8476 0.8477 
0.50 0.5679 0.5574 0.8548 0.8549 
0.25 0.8609 0.8605 0.8620 0.8621 
0.00 1.1836 1.1818 0.6300 0.6300 

TABLE 2. Numerical comparison between (2.30a, 3) and (4.2a, 3) for k = 0.5, T = 144, E = 0.00302, 
Q = -0.25. In contrast to table 1, 8 is here taken as the independent variable. This leads to 
somewhat simpler computations because both (2.223) and (4.2b) are integrals with respect to 6. 

This approximate solution describes a situation where the particles are falling 
passively in the suspending fluid. t The higher-order corrections are considerably more 
complicated than in the batch-settling case. For simplicity attention will therefore 
henceforth be restricted to cases where e is very small and (4.2a, b) can be used with 
accuracy. The subscript 0 will be deleted in what follows. A numerical comparison 
between (4.2a, b) and the exact solution is shown in table 2. 

As a preliminary, a simple case with negligible effects of rotation on the velocity 
field, i.e. T 4 1, will be considered. E can be made sufficiently small by choosing a 
small value of 1 (see 3.1 b). The expression for qq with T = 0 is given in the Appendix. 
The behaviour of the solution for small times, which is most conveniently obtained 
directly from (2.29a, b), is given by 

6 = 6,- t+O(t%) (0 < 6, < l),  ( 4 . 3 ~ )  

2 = l+u; (6 , ) t+O( t s ) ,  (4.3 b )  

where Q a q  SQ u;.q = -4 = - 6(1-6) 
2 as (4.3c, d )  

An interesting property of thia solution is that the characteristics are the trajectories in the 
(2, t)-plane of the particles at the interface. This follows from (2.25), (2.293) and the fact that the 
bulk velocity field is independent of 8. 
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8 - =  0 8+ aq,/aa 

FIGURE 13. (a) Equal-area construction applied to the flux function qq to  determine S+(O) for the 
caw in figure 14 (a). (a) Shock construction in the (qQ, 6)-diqram for the solution shown in figure 
14(a). 

is the velocity in the x-direction, normalized according to (2.27a, b ) ,  of the particles 
at the interface. Elimination of 6, in (4.3a, b )  gives 

z = l+u;(G)t+O(t2) (0 < 6 < l) ,  (4.4) 

which simply means that, for small times, the multivalued solution 6(x, t )  has the same 
form as the parabolic velocity profile. A shock will thus appear immediately and the 
computation of s ( t )  and 6* ( t )  requires specification of 6* (0). To obtain a single-valued 
solution, one must obviously take S - ( O )  = 0 because the particles on the interface 
near y = 0 are advected in the x-direction with a vanishing velocity. S + ( O )  is 
determined from the equal-area rule (Whitham 1974, p. 42), which means that the 
shock must be constructed in such a way that the volume of suspension is conserved. 
The construction is illustrated in figure 13(a). One obtains from this figure 

Q 6+u:(6+) = - q0(6+),  
S 

which means that in the shock construction in the (qQ, &)-diagram, see figure 13 (b ) ,  
the secant is initially tangential to the curve qQ(S).  This result is independent of the 
particular form of qQ(6) and will be used later in this section. For the form given by 
(4 .34 ,  6+(0+) = 3. It can be shown that the equal-area rule is, for several reasons, 
only applicable in the present problem for small times. One reason is that the volume 
of suspension is not conserved for finite times but is approximately conserved for small 
times. Further aspects of this matter is discussed in the Appendix of the paper by 
Cramer & Kluwick (1984). 

The characteristic diagram is shown in figure 14 ( b ) .  The initial discontinuity in 6 
gives a fan of intersecting characteristics from x = 1,  t = 0. The non-uniqueness is 
removed by insertion of a shock as  described in the previous paragraph and thereby 
only non-intersecting characteristics will be left in the fan. Ahead of the shock, i.e. 
in x < s ( t ) ,  6 = 0 and the characteristics are parallel with the t-axis. As can be seen 
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0.5 X 1 

0.5 X Xr 1 

FIGURE 14. (a) Location of the interface in the filling problem fort = 0.1,0.5,1 .O, 2.0 (k = 0.5, T = 0, 
E = 0, Q = -0.25). The interface is initially unsteady in 8 < z < 1 but later becomes steady. (a) 
Characteristic diagram for the solution shown in figure 14 (a): - - -, shock path. q e  solution in 
zf < z < 1, 0 < t < t, is determined by the fan from z = 1 ,  t = 0. The final steady shape of the 
interface is reached when t < t,. 

from figure 14 (b), the characteristics are in this case directed into the shock path from 
both sides. The shock path is thus computed by numerical integration of the left part 
of (3 .5)  with q = Qqs. In addition to the characteristics in the fan, there are also 
characteristics from z = 1, t > 0 behind the shock. Along these characteristics, which 
have the same shape, 6(t) is the same. This means that after the first characteristic 
with 6, = 1, zt = 1 has reached the shock path at  z = zf, t = t,, say, see figure 14(b), 
the shape of the interface in s( t )  < z < 1 will be steady. For obvious reasons, the 
strength of the shock decays monotonically to zero. These properties of the solution 
are clearly illustrated in figure 14 (a), which shows 6(z, t ) .  

It is of interest to investigate how the steady state with 6+ = 0 is approached. From 
(4.2~) one finds that the final shape of the interface is given by 

5 = {1+3Q[1-(362-263)]}f .  (4.7) 

(4.8) 
where it has been assumed that p, y are o(1) and A and 8 are 0(1), one finds, after 
some algebra, from (4.6) that 

(4.9) 

If one writes 

& + ( t )  = p ~ ( t ) + O ( p 2 ) , W  = ( 1 + 3 Q ) f + y ( p ) S ( t ) + o ( y ) ,  

y=rU2, s = [  3*(t,-t) 2p ] 2, A = (1 +3Q)f (S/(*l)k 

Here t ,  is thefinite time at which the steady state is reached. t ,  can only be determined 
from the complete solution. (4.9) has been derived under the assumption that the 
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0.5 X 1 

0.5 X 1 

FIGURE 15. (a) Location of the interface in the filling problem for t = 0.1, 0.5, 1, 2, 3 (k = 0.5, 
T = 144, E = 0.00302, Q = -0.25). (b )  Characteristic diagram for the solution shown in figure 16(a): 
_ _ _  , shock path: --, contact line 6(z,t) = 0. 

shock strength decays to zero for t > t,. Cases where this condition is not fulfilled, 
i.e. short channels, seem to be of less practical importance and are not considered 
here. 

A quantity of practical interest is the maximum throughput lQlmax with complete 
separation (in the steady state) for a given location of the inner edge of the disks 
(x = k). ( 4 . 2 ~ )  with q(6,) = Q,,, and q(k )  = 0 gives 

(4.10) 

This result, which is valid for any value of T, seems to have been first given by 
Svarovsky (197 1) for T 4 1. It should be noted that the shape of the interface varies 
with T. In dimensional terms, (4.10) means that QZ,,, for a given geometry of the 
channel, increases with the square of the angular velocity of the channel. 

The solution for T = 144 is shown in figure 15(a). Two shocks will appear in this 
case. The location of these shocks are denoted by x = sl(t) and x = s,(t), respectively, 
where the subscripts imply lower and upper (8 ,  < sl). Figure 16(a) shows the 
equal-area construction for computing 8: (0) and 8; (0). The shock construction in 
the (qQ, &)-diagram is shown in figure 16 ( b ) .  Characteristics and shock paths are shown 
in figure 15 (b ) .  

The upper shock has a similar character to that in the previous case whereas the 
nature of the lower shock is different. In the same way as in the previous case, the 
equal-area construction, see figure 15(a), leads to (4.6) for the upper shock and the 
following relation for the lower shock : 

(4.11) 
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aqQ/as 

qQ2 0 

FIGURE 16. (a) Equal-area construction applied to the flux function qQ to determine 8 t  (0) and q ( 0 )  
for the cam shown in figure 15(a). (b)  Shock construction in the (qQ, 8)-diagmm for the solution 
shown in figure 15(a). 

Because the characteristics are the trajectories in the (2, t)-plane of the particles at 
the interface and the particles are advected in the negative 2-direction,t see the 
velocity profiles in figure 4, characteristics must come out from the lower shock into 
the region x < sl(t). As was discussed in some detail in the previous section, one must 
therefore require that (cf. (3.6)) 

(4.12) 

The path of the lower shock is thus computed from the left-hand part of (3.5) with 
q = Qqe and (4.12) by using the procedure outlined after (3.6). The strength of thia 
shock does not decay to zero as the steady state is approached. The asymptotic values 
if*( 00) are readily determined geometrically from the curve in figure 15 (b) by drawing 
the horizontal secant between c and 6, with S;- such that (4.12) is fulfilled. When 
G(m) is known, the steady shape of the interface in sl(OO) < x c 1 can be computed 
from (4.2 a)  as in the previously discussed case for T 4 1. 

The approach of the lower shock to the steady state can be computed by using 
standard regular perturbation methods. Assuming expansions of the form (cf. (4.8)) 

(4.13) I 4V) = 8,+(m)+pA(t), W) = S;-(a)+O(p*) ,  

W )  = %(m)+Y(p)W)+O(Y) ,  
one finds 

G 
y = p ,  A =  -1, (4.14) 

L \"1\-! ul-(m)) 

where A is a constant that must be determined from the complete solution. 
The general character of the solution in s,(t) < x < sl(t) is very similar to the 

t This is not true in the small regions of backflow in the Ekman layers. However, it can be shown 
that this does not affect the argument. 
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solution in the previously discussed case for small values of T. ‘The main difference 
is that, for fmite values of T, the quantities xi = s ( t )  and 8, = q ( t ) ,  which determine 
the solution on the characteristics, are not constants. The location of the interface 
between the two shocks is therefore time-dependent. For the case shown in figure 16, 
the strength of the upper shock decays quite rapidly to zero and is replaced by a 
moving contact line (see e.g. figure 16a). When the lower shock is close to its 
asymptotic position, the shape of the interface in x <s , ( t )  can be computed 
approximately from ( 4 . 2 ~ )  with So, = S; ( t ) .  

Although the previous discussion in mathematical terms is rather involved, the 
results can be interpreted in a simple, albeit qualitative, way by considering the 
motion of passively falling particles in a velocity field of the kind that is shown in 
figure 4.  The particles entering the channel in the Ekman layer a t  y = 1 will fall out 
from this layer into the region of geostrophic flow where the velocity in the x-direction 
is negligible. Because the velocity profile is non-monotonic, the interface between 
clear fluid and suspension will immediately fold over itself and the lower shock is 
formed. For the same reason, the upper shock will be formed in the Ekman layer at  
y = 0. The particles that are falling in the geostrophic region behind the lower shock 
will be accelerated when they enter the Ekman layer at y = 0. The upper shock will 
therefore propagate faster into the channel than the lower one. Because there are two 
maxima in the velocity profile, the strength of the lower shock will be finite also when 
the steady state is attained. One finds that the lower shock occurs for T > 39.5. 

Finally, it  should be pointed out that it follows directly from ( 4 . 2 ~ )  and (4.11) with 
B, = 0 that (4.10) is valid even if there is a shock in the steady state. 

5. Conclusions 
The theoretical results by Herbolzheimer & Acrivos (1981) for time-dependent 

settling of a dilute monodisperse suspension due to gravity in narrow tilted channels 
have been extended to axisymmetric settling in the centrifugal field between two 
narrowly spaced and rapidly rotating conical disks. Two problems have been solved : 
batch settling, and the problem where a suspension is pumped from the outer end 
into a channel that is initially filled with clear fluid. The main results are: 

Batch settling 
The general character of the solution is similar to that in the plane, non-rotating 

case studied by Herbolzheimer & Acrivos (1981). It is shown that the shock 
construction given in that work must be partly modified according to the results of 
Wendroff (1972a, b ) .  

The buoyancy-driven motion of clear fluid and suspension, which can be charac- 
terized as long gravity waves of finite amplitude at low Reynolds number, tends to 
be blocked by rotation. For large Taylor numbers, i.e. when Coriolis effects are strong, 
meridional flow will take place only in the Ekman layers. This flow is considerably 
weaker than the flow at small Taylor numbers. 

Filling problem 
For small values of the Taylor number, one shock appears in the solution. The 

strength of this shock decays to zero. For large Taylor numbers there are two shocks. 
One of these decays with time whereas the other one remains of fmite strength for 
all times. The steady state is reached after a finite time for small Taylor numbers but 
approached exponentially for large Taylor numbers. In spite of the very different 
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character of the steady solution for small and large Taylor numbers, the same simple 
formula for the maximum throughput is valid for all Taylor numbers. 

This work has been partially supported by the Swedish Board for Technical 
Development (STU) and Alfa Lava1 AB. 

Appendix. The functions q B ( 8 )  and qQ(8) 
In terms of the variables 

q = 1-28, p = ifl 
the functions q B  and qQ can be written 

where 

ed+ + fd-  
b ’  

a( p)  = cosh2 p cos2 p + sinh2p sin2 p, 

b( p)  = sinh2 p cos2 p + cosh2 p sin2 p, 

c( p)  = sinh 2p - sin 2p, 

d* ( p )  = sinh 2p( 1 - 2 sin2 p)  f sin 2p( 1 + 2 sinh2 p )  

e h p )  = (1-cosh[p(q-1)1 COS[P(V-1)1) (i-cosh[P(rl+ 111 cos[p(r+1)1) 

f h  P )  = sinh M q  - 111 sin [p(q - 111 (1  - cash [pu(rl+ 111 COS [ p ( v  + 1 )I) 

-sinh[p(q- l)]  sin[p(q- i)] sinh[p(q+ l ) ]  sin[p(q+ l)], 

+ sinh [p(q + 1 )I sin [p(q + 111 (1 - cash [p(q - 1 )I COB [p(q - I)]), 

h ( q , p )  = sinh (pq) cos (pq) coshp cosp+cosh (pq) sin (pq) sinhp sinp 

+ sinh (pq) cos (pq) sinh p sin p - cosh ( pq) sin (pq) cosh p cosp. 

ForT=O 

83( i - 8)s 
3 ’  qB(T = 0) = 2 d 3  sinsa 

Note added in proof: Recently two papers dealing with similar problems as in this 
work but for - A{ have appeared in the literature; Greenspan 1985(a, b). 
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